單項(xiàng)選擇題一臺(tái)X型號(hào)的自動(dòng)機(jī)床在一小時(shí)內(nèi)不需要人照看的概率為0.8000,有四臺(tái)這種型號(hào)的自動(dòng)機(jī)床各自獨(dú)立工作,則在一小時(shí)內(nèi)至多有2臺(tái)機(jī)床需要工人照看的概率是()。

A.0.1536
B.0.1808
C.0.5632
D.0.9728


您可能感興趣的試卷

你可能感興趣的試題

2.單項(xiàng)選擇題在研究吸煙與患肺癌的關(guān)系中,通過收集數(shù)據(jù)、整理分析數(shù)據(jù)得“吸煙與患肺癌有關(guān)”的結(jié)論,并且有99%以上的把握認(rèn)為這個(gè)結(jié)論是成立的,下列說法中正確的是()。

A.100個(gè)吸煙者中至少有99人患有肺癌
B.100個(gè)吸煙者中可能一個(gè)患肺癌的人也沒有
C.1個(gè)人吸煙,那么這個(gè)人有99%的概率患有肺癌
D.100個(gè)吸煙者中一定有患肺癌的人

3.單項(xiàng)選擇題下面關(guān)于離散型隨機(jī)變量的期望與方差的結(jié)論錯(cuò)誤的是()。

A.期望反映隨機(jī)變量取值的平均水平,方差反映隨機(jī)變量取值集中與離散的程度
B.期望與方差都是一個(gè)數(shù)值,它們不隨試驗(yàn)的結(jié)果而變化
C.方差是一個(gè)非負(fù)數(shù)
D.期望是區(qū)間[0,1]上的一個(gè)數(shù)

4.單項(xiàng)選擇題下列隨機(jī)變量中,不是離散型隨機(jī)變量的是()。

A.從10只編號(hào)的球(0號(hào)到9號(hào))中任取一只,被取出的球的號(hào)碼ξ
B.拋擲兩個(gè)骰子,所得的最大點(diǎn)數(shù)ξ
C.[0,10]區(qū)間內(nèi)任一實(shí)數(shù)與它四舍五人取整后的整數(shù)的差值ξ
D.一電信局在未來某日內(nèi)接到電話呼叫次數(shù)ξ

最新試題

甲、乙兩人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率為,乙每次擊中目標(biāo)的概率為。求:(1)記甲擊中目標(biāo)的次數(shù)為ξ,ξ的概率分布及數(shù)學(xué)期望;(2)乙至多擊中目標(biāo)2次的概率;(3)甲恰好比乙多擊中目標(biāo)2次的概率。

題型:?jiǎn)柎痤}

有5個(gè)編號(hào)為1、2、3、4、5的紅球和5個(gè)編號(hào)為1、2、3、4、5的黑球,從這10個(gè)球中取出4個(gè),則取出的球的編號(hào)互不相同的概率為()。

題型:?jiǎn)雾?xiàng)選擇題

下列隨機(jī)變量中,不是離散型隨機(jī)變量的是()。

題型:?jiǎn)雾?xiàng)選擇題

某工廠生產(chǎn)A、B、C三種不同型號(hào)的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:5。現(xiàn)用分層抽樣方法抽出一個(gè)容量為n的樣本,樣本中A種型號(hào)產(chǎn)品有16件。求此樣本的容量n。

題型:?jiǎn)柎痤}

某地最近出臺(tái)一項(xiàng)機(jī)動(dòng)車駕照考試規(guī)定:每位考試者一年之內(nèi)最多有4次參加考試的機(jī)會(huì),一旦某次考試通過,使可領(lǐng)取駕照,不再參加以后的考試,否則就一直考到第4次為止。如果李明決定參加駕照考試,設(shè)他每次參加考試通過的概率依次為0.6,0.7,0.8,0.9,求在一年內(nèi)李明參加駕照考試次數(shù)ξ的分布列和ξ的期望,并求李明在一年內(nèi)領(lǐng)到駕照的概率。

題型:?jiǎn)柎痤}

下面關(guān)于離散型隨機(jī)變量的期望與方差的結(jié)論錯(cuò)誤的是()。

題型:?jiǎn)雾?xiàng)選擇題

體育老師對(duì)九年級(jí)(1)班學(xué)生“你最喜歡的體育項(xiàng)目是什么?(只寫一項(xiàng))”的問題進(jìn)行了調(diào)查,把所得數(shù)據(jù)繪制成頻數(shù)分布直方圖(如圖)。由圖可知,最喜歡籃球的頻率是()。

題型:?jiǎn)雾?xiàng)選擇題

在研究吸煙與患肺癌的關(guān)系中,通過收集數(shù)據(jù)、整理分析數(shù)據(jù)得“吸煙與患肺癌有關(guān)”的結(jié)論,并且有99%以上的把握認(rèn)為這個(gè)結(jié)論是成立的,下列說法中正確的是()。

題型:?jiǎn)雾?xiàng)選擇題

將溫度調(diào)節(jié)器放置在貯存著某種液體的容器內(nèi),調(diào)節(jié)器設(shè)定在d℃,液體的溫度ξ(單位:℃)是一個(gè)隨機(jī)變量,且ξ~N(d,0.52)。(1)若d=90℃,則ξ<89的概率為多少?(2)若要保持液體的溫度至少為80℃的概率不低于0.99,則d至少是多少?(其中若η~N(0,1),則

題型:?jiǎn)柎痤}

某商場(chǎng)經(jīng)銷某商品,根據(jù)以往資料統(tǒng)計(jì),顧客采用的付款期數(shù)ξ的分布列為商場(chǎng)經(jīng)銷一件該商品,采用1期付款,其利潤(rùn)為200元;分2期或3期付款,其利潤(rùn)為250元;分4期或5期付款,其利潤(rùn)為300元,η表示經(jīng)銷一件該商品的利潤(rùn)。(1)求事件A:“購(gòu)買該商品的3位顧客中,至少有1位采用1期付款”的概率P(A);(2)求η的分布列及期望Eη。

題型:?jiǎn)柎痤}