A.第一個(gè)
B.第二個(gè)
C.第三個(gè)
D.第四個(gè)
您可能感興趣的試卷
你可能感興趣的試題
A.變量代換
B.離散化
C.聚集
D.估計(jì)遺漏值
A.根據(jù)內(nèi)容檢索
B.建模描述
C.預(yù)測(cè)建模
D.尋找模式和規(guī)則
A.探索性數(shù)據(jù)分析
B.建模描述
C.預(yù)測(cè)建模
D.尋找模式和規(guī)則
A.頻繁模式挖掘
B.分類和預(yù)測(cè)
C.數(shù)據(jù)預(yù)處理
D.數(shù)據(jù)流挖掘
以下兩種描述分別對(duì)應(yīng)哪兩種對(duì)分類算法的評(píng)價(jià)標(biāo)準(zhǔn)?()
(1)警察抓小偷,描述警察抓的人中有多少個(gè)是小偷的標(biāo)準(zhǔn)。
(2)描述有多少比例的小偷給警察抓了的標(biāo)準(zhǔn)。
A.Precision,Recall
B.Recall,Precision
C.Precision,ROC
D.Recall,ROC
最新試題
數(shù)據(jù)復(fù)制或者備份均是為了從提高數(shù)據(jù)并發(fā)這個(gè)角度來(lái)設(shè)計(jì)和實(shí)現(xiàn)的。
小數(shù)據(jù)集的數(shù)據(jù)處理最好也由計(jì)算機(jī)手段來(lái)完成。
對(duì)于文本數(shù)據(jù)和多媒體數(shù)據(jù)進(jìn)行特征提取是為了方便對(duì)于這類數(shù)據(jù)的觀察和理解。
訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過(guò)度擬合訓(xùn)練數(shù)據(jù)的潛在問(wèn)題。
如果P(A B)= P(A),則P(A∩B)= P(A)P(B)。
要將工作申請(qǐng)分為兩類,并使用密度估計(jì)來(lái)檢測(cè)離職申請(qǐng)人,我們可以使用生成分類器。
假設(shè)屬性的數(shù)量固定,則可以在時(shí)間上以線性方式學(xué)習(xí)基于高斯的貝葉斯最優(yōu)分類器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。
數(shù)據(jù)索引就像給每條數(shù)據(jù)裝了個(gè)信箱。
數(shù)據(jù)壓縮與解壓縮可以使得數(shù)據(jù)處理的速度加快。
當(dāng)反向傳播算法運(yùn)行到達(dá)到最小值時(shí),無(wú)論初始權(quán)重是什么,總是會(huì)找到相同的解(即權(quán)重)。