A.填補數(shù)據(jù)種的空缺值
B.集成多個數(shù)據(jù)源的數(shù)據(jù)
C.得到數(shù)據(jù)集的壓縮表示
D.規(guī)范化數(shù)據(jù)
您可能感興趣的試卷
你可能感興趣的試題
A.概念分層
B.離散化
C.分箱
D.直方圖
A.孤立點
B.空缺值
C.測量變量中的隨即錯誤或偏差
D.數(shù)據(jù)變換引起的錯誤
A.空間填充曲線
B.散點圖矩陣
C.平行坐標
D.圓弓分割
A.標稱屬性
B.二元屬性
C.序數(shù)屬性
D.數(shù)值屬性
A.算術(shù)平均值
B.截尾均值
C.中位數(shù)
D.眾數(shù)
最新試題
數(shù)據(jù)存儲體系中并不牽扯計算機網(wǎng)絡(luò)這一環(huán)節(jié)。
任何對數(shù)據(jù)處理與存儲系統(tǒng)的操作均需要記錄,這符合數(shù)據(jù)安全的要求。
使用偏差較小的模型總是比偏差較大的模型更好。
非結(jié)構(gòu)化數(shù)據(jù)也可以使用關(guān)系型數(shù)據(jù)庫來存儲。
選擇用于k均值聚類的聚類數(shù)k的一種好方法是嘗試k的多個值,并選擇最小化失真度量的值。
通常,當試圖從大量觀察中學習具有少量狀態(tài)的HMM時,我們幾乎總是可以通過允許更多隱藏狀態(tài)來增加訓練數(shù)據(jù)的可能性。
當數(shù)據(jù)集標簽錯誤的數(shù)據(jù)點時,隨機森林通常比AdaBoost更好。
訓練神經(jīng)網(wǎng)絡(luò)具有過度擬合訓練數(shù)據(jù)的潛在問題。
管理員不需要驗證就可以訪問數(shù)據(jù)存儲系統(tǒng)中的任何數(shù)據(jù),這符合數(shù)據(jù)安全的要求。
數(shù)據(jù)索引是保證數(shù)據(jù)處理高性能的軟件角度的一種手段,不做數(shù)據(jù)索引的數(shù)據(jù)訪問是線性訪問,但是做了索引的數(shù)據(jù)訪問會成倍的降低訪問時間。