問(wèn)答題
試證矩陣
是非退化陣,并算出其逆陣
您可能感興趣的試卷
你可能感興趣的試題
1.問(wèn)答題
試對(duì)矩陣
建立等價(jià)標(biāo)椎形分解式。
3.問(wèn)答題
設(shè)
作乘積
4.問(wèn)答題
設(shè)
作乘積
5.問(wèn)答題
設(shè)
作乘積
最新試題
二次型f(x1,x2,x3)=x12+x22+x32+2x1x2+2x1x3+2x2x3的秩為()。
題型:?jiǎn)雾?xiàng)選擇題
設(shè)矩陣B滿足方程B=,求矩陣B。
題型:?jiǎn)柎痤}
如果A2-6A=E,則A-1=()
題型:?jiǎn)雾?xiàng)選擇題
求方程組的基礎(chǔ)解系和通解。
題型:?jiǎn)柎痤}
若α1,α2是非齊次線性方程組AX=β的兩個(gè)線性無(wú)關(guān)的解,以下結(jié)論正確的是()
題型:?jiǎn)雾?xiàng)選擇題
若排列21i36j87為偶排列,則i=(),j=()
題型:填空題
設(shè)A是m×n矩陣,B是n×m矩陣,且丨BA丨=0,則必有n>m。()
題型:判斷題
二次型f(x1,x2,x3)=x12-2x22-2x32-4x1x2+4x1x3+8x2x3的秩為()
題型:?jiǎn)雾?xiàng)選擇題
設(shè)R3的基為α1=,α2=,α3=,則β=在基{α1,α2,α3}下的坐標(biāo)為()。
題型:填空題
試問(wèn)a為何值時(shí),向量組α=(1,0,-1,2),β=(0,2,a,3),γ=(-1,a,a+1,a-2)線性相關(guān)。
題型:?jiǎn)柎痤}