A.α1、α2、α3、α4中至少有一個(gè)零向量
B.α1、α2、α3、α4中至少有兩個(gè)向量成比例
C.α1、α2、α3、α4中至少有一個(gè)向量可由其余向量線性表示
D.α1、α2、α3、α4中至少有一部分組線性相關(guān)
您可能感興趣的試卷
你可能感興趣的試題
A.a1,a2,…,as-1線性相關(guān)
B.a1,a2,…,as+1線性相關(guān)
C.a1,a2,…,as-1線性無關(guān)
D.a1,a2,…,as+1線性無關(guān)
A.A、B為對稱矩陣
B.B=E
C.A=E
D.AB=BA
A.方程個(gè)數(shù)m>n
B.方程個(gè)數(shù)m< n
C.方程個(gè)數(shù)m=n
D.r(A)< n
A.λ1=2,λ2=2,λ3=4
B.λ1=2,λ2=4,λ3=4
C.λ1=2,λ2=3,λ3=4
D.λ1=1,λ2=2,λ3=4
最新試題
設(shè)A是m×n矩陣,B是n×m矩陣,且丨BA丨=0,則必有n>m。()
設(shè)A為3階實(shí)對稱矩陣,向量ξ1=(1,2,5)T,ξ2=(k,2k,3)T分別對應(yīng)于特征值2和3的特征向量,則k=()。
設(shè)R3的基為α1=,α2=,α3=,則β=在基{α1,α2,α3}下的坐標(biāo)為()。
二次型f(x1,x2,x3)=x12+x22+x32+2x1x2+2x1x3+2x2x3的秩為()。
相似的兩個(gè)矩陣一定相等。()
設(shè)A為3階矩陣,丨A丨=1/2,求丨A*丨=()
若α1,α2是非齊次線性方程組AX=β的兩個(gè)線性無關(guān)的解,以下結(jié)論正確的是()
若A為n階可逆矩陣,則R(A)=()。
設(shè)A=,B=,C=,則(A+B)C=()
若矩陣A=的秩r(A)=2,則t=() 。