已知,證明不等式:,當(dāng)且僅當(dāng)a=b=c時(shí)取等號(hào)。
您可能感興趣的試卷
你可能感興趣的試題
求證:.
A.30種
B.90種
C.180種
D.270種
A.20
B.19
C.18
D.16
若展開(kāi)式中含項(xiàng)的系數(shù)與含項(xiàng)的系數(shù)之比為-5,則n等于()。
A.4
B.5
C.6
D.10
A.-5
B.5
C.-10
D.10
最新試題
求證:.
在a>0,b>0的條件下,,其中正確的個(gè)數(shù)是()。
(1)求的展開(kāi)式中x4的系數(shù):(2)求的展開(kāi)式中的常數(shù)項(xiàng):(3)求的展開(kāi)式中x3的系數(shù)。
從2,3,4,7,9這五個(gè)數(shù)字任取3個(gè),組成沒(méi)有重復(fù)數(shù)字的三位數(shù)。(1)這樣的三位數(shù)一共有多少個(gè)?(2)所有這些三位數(shù)的個(gè)位上的數(shù)字之和是多少?(3)所有這些三位數(shù)的和是多少?
將5名實(shí)習(xí)教師分配到高一年級(jí)的3個(gè)班實(shí)習(xí),每班至少1名,最多2名,則不同的分配方案有()。
在△ABC中,a,b,c分別是∠A,∠B,∠C所對(duì)應(yīng)的邊,∠C=90°,則的取值范圍是()。
若展開(kāi)式中含項(xiàng)的系數(shù)與含項(xiàng)的系數(shù)之比為-5,則n等于()。
從正方體的6個(gè)面中選取3個(gè)面,其中有2個(gè)面不相鄰的選法共有()。
從5位男教師和4位女教師中選出3位教師,派到3個(gè)班擔(dān)任班主任(每班1位班主任),要求這3位班主任中男、女教師都要有,則不同的選派方案共有()。
已知,則f(k+1)=()。