A.MIN(單鏈)
B.MAX(全鏈)
C.組平均
D.Ward方法
您可能感興趣的試卷
你可能感興趣的試題
A.統(tǒng)計(jì)方法
B.鄰近度
C.密度
D.聚類技術(shù)
A.分類器
B.聚類算法
C.關(guān)聯(lián)分析算法
D.特征選擇算法
A.邊界點(diǎn)
B.質(zhì)心
C.離群點(diǎn)
D.核心點(diǎn)
A.曼哈頓距離
B.平方歐幾里德距離
C.余弦距離
D.Bregman散度
A.層次聚類
B.劃分聚類
C.非互斥聚類
D.模糊聚類
最新試題
數(shù)據(jù)索引是保證數(shù)據(jù)處理高性能的軟件角度的一種手段,不做數(shù)據(jù)索引的數(shù)據(jù)訪問是線性訪問,但是做了索引的數(shù)據(jù)訪問會成倍的降低訪問時間。
數(shù)據(jù)存儲體系中并不牽扯計(jì)算機(jī)網(wǎng)絡(luò)這一環(huán)節(jié)。
由于決策樹學(xué)會了對離散值輸出而不是實(shí)值函數(shù)進(jìn)行分類,因此它們不可能過度擬合。
對于文本數(shù)據(jù)和多媒體數(shù)據(jù)進(jìn)行特征提取是為了方便對于這類數(shù)據(jù)的觀察和理解。
當(dāng)MAP中使用的先驗(yàn)是參數(shù)空間上的統(tǒng)一先驗(yàn)時,MAP估計(jì)等于ML估計(jì)。
假設(shè)屬性的數(shù)量固定,則可以在時間上以線性方式學(xué)習(xí)基于高斯的貝葉斯最優(yōu)分類器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。
由于分類是回歸的一種特殊情況,因此邏輯回歸是線性回歸的一種特殊情況。
數(shù)據(jù)復(fù)制或者備份均是為了從提高數(shù)據(jù)并發(fā)這個角度來設(shè)計(jì)和實(shí)現(xiàn)的。
最大似然估計(jì)的一個缺點(diǎn)是,在某些情況下(例如,多項(xiàng)式分布),它可能會返回零的概率估計(jì)。
使決策樹更深將確保更好的擬合度,但會降低魯棒性。