A.設(shè)備異常
B.命名規(guī)則的不一致
C.與其他已有數(shù)據(jù)不一致而被刪除
D.在輸入時,有些數(shù)據(jù)因為得不到重視而沒有被輸入
您可能感興趣的試卷
你可能感興趣的試題
A.數(shù)據(jù)中的空缺值
B.噪聲數(shù)據(jù)
C.數(shù)據(jù)中的不一致性
D.數(shù)據(jù)中的概念分層
A.平滑
B.聚集
C.數(shù)據(jù)概化
D.規(guī)范化
A.數(shù)據(jù)清理
B.數(shù)據(jù)集成
C.數(shù)據(jù)變換
D.數(shù)據(jù)歸約
A.去掉數(shù)據(jù)中的噪聲
B.對數(shù)據(jù)進行匯總和聚集
C.使用概念分層,用高層次概念替換低層次“原始”數(shù)據(jù)
D.將屬性按比例縮放,使之落入一個小的特定區(qū)間
A.填補數(shù)據(jù)種的空缺值
B.集成多個數(shù)據(jù)源的數(shù)據(jù)
C.得到數(shù)據(jù)集的壓縮表示
D.規(guī)范化數(shù)據(jù)
最新試題
無論質(zhì)心的初始化如何,K-Means始終會給出相同的結(jié)果。
數(shù)據(jù)壓縮與解壓縮可以使得數(shù)據(jù)處理的速度加快。
使決策樹更深將確保更好的擬合度,但會降低魯棒性。
要將工作申請分為兩類,并使用密度估計來檢測離職申請人,我們可以使用生成分類器。
數(shù)據(jù)復(fù)制或者備份均是為了從提高數(shù)據(jù)并發(fā)這個角度來設(shè)計和實現(xiàn)的。
選擇用于k均值聚類的聚類數(shù)k的一種好方法是嘗試k的多個值,并選擇最小化失真度量的值。
給定用于2類分類問題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因為SVM通常能夠在訓練集上實現(xiàn)更好的分類精度。
支持向量機不適合大規(guī)模數(shù)據(jù)。
假設(shè)屬性的數(shù)量固定,則可以在時間上以線性方式學習基于高斯的貝葉斯最優(yōu)分類器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。
通過統(tǒng)計學可以推測擲兩個撒子同時選中3點的幾率。