單自由度有阻尼系統(tǒng)在簡(jiǎn)諧激勵(lì)作用下,其方程為,初始條件為,則響應(yīng)x(t)為下列說法不正確的是()。
A.x(t)表達(dá)式中第一項(xiàng)為零輸入響應(yīng)
B.x(t)表達(dá)式中最后兩項(xiàng)為零初始條件響應(yīng)
C.x(t)表達(dá)式中最后一項(xiàng)為穩(wěn)態(tài)響應(yīng)
D.x(t)表達(dá)式中前兩項(xiàng)為伴生自由振動(dòng)響應(yīng)
您可能感興趣的試卷
你可能感興趣的試題
如圖所示系統(tǒng),懸臂梁的等效剛度為,則整個(gè)系統(tǒng)的等效剛度為()。
A.
B.k
C.
D.4k
一質(zhì)量為M的鋼制剛架,用長度2L的張緊的鋼絲連接,每根鋼絲張力為T,如圖所示。一質(zhì)量塊m用兩只彈性常數(shù)為k的彈簧系于剛架內(nèi)部,列寫系統(tǒng)振動(dòng)微分方程為,,其中x1,x2分別是剛架和質(zhì)量塊的位移。問剛度矩陣K為()。
A.
B.
C.
D.
多自由度系統(tǒng),C為比例阻尼模型。按無阻尼情況求得各階主振型,并構(gòu)成模態(tài)矩陣。則在模態(tài)疊加法的解法過程中()。
A.若外力f(t)為一個(gè)在x1自由度上施加的單位簡(jiǎn)諧激勵(lì),則系統(tǒng)的穩(wěn)態(tài)響應(yīng)可以表示為這里為頻響函數(shù)矩陣
B.由在模態(tài)空間中的微分方程得到頻響函數(shù),則該多自由度系統(tǒng)的頻響函數(shù)矩陣可以表示為
C.如果采用歸一化的模態(tài)矩陣,即滿足。初始條件模態(tài)空間內(nèi)表達(dá)為
D.作物理空間到模態(tài)空間的變換可將原方程解耦為的形式
A.比例阻尼模型中,阻尼矩陣視為質(zhì)量矩陣和剛度矩陣的線性組合
B.多自由度系統(tǒng)的質(zhì)量矩陣總是對(duì)角矩陣
C.多自由度系統(tǒng)的質(zhì)量矩陣和剛度矩陣總是對(duì)稱的
D.某多自由度系統(tǒng)的兩個(gè)主振型向量Xi和Xj線性無關(guān),則它們對(duì)應(yīng)的固有頻率不等,即ωi≠ωj
如圖,在水平面xy內(nèi),質(zhì)點(diǎn)m通過三根互成120°的彈簧(剛度系數(shù)均為k)與固定端連接,假設(shè)質(zhì)點(diǎn)做微幅振動(dòng)。以質(zhì)點(diǎn)在x和y兩個(gè)方向上的位移為廣義坐標(biāo)建立動(dòng)力學(xué)方程,求系統(tǒng)的固有頻率ω1,ω2和V1,V2主振型()。
A.
B.
C.
D.
最新試題
關(guān)于多自由度系統(tǒng),下列說法正確的是()。
一質(zhì)量為M的鋼制剛架,用長度2L的張緊的鋼絲連接,每根鋼絲張力為T,如圖所示。一質(zhì)量塊m用兩只彈性常數(shù)為k的彈簧系于剛架內(nèi)部,列寫系統(tǒng)振動(dòng)微分方程為,,其中x1,x2分別是剛架和質(zhì)量塊的位移。問剛度矩陣K為()。
?一長為l的簡(jiǎn)支梁中部有一個(gè)集中質(zhì)量塊M=ρAl,如圖所示。梁的抗彎剛度EJ,密度ρ和截面積A均為已知。A同學(xué)采取單自由度的簡(jiǎn)化方式,將簡(jiǎn)支梁視為剛度為的彈簧,很快給出系統(tǒng)基頻的估計(jì)值ω1A;同學(xué)B覺得此法過于簡(jiǎn)化,可能存在較大誤差,于是他決定采用連續(xù)體近似解法中的假設(shè)模態(tài)法來求解,假設(shè)振型取為,得到基頻估計(jì)值ω1B。問為多少?()
試用能量法求圖a所示梁具有均布質(zhì)量m=q/g的最低頻率,設(shè)以梁在自重下的彈性曲線為其振動(dòng)形式。
關(guān)于均勻等截面,?下列各項(xiàng)中正確的有()。
?如圖懸臂梁自由端有一集中質(zhì)量塊M對(duì)此系統(tǒng)的正交性條件表述正確的是()。
?如圖懸臂梁端有一小質(zhì)量塊m,質(zhì)量塊同時(shí)被兩根剛度系數(shù)為k的彈簧所支撐,彈簧與地面夾角均為45°,梁的抗彎剛度EJ,長度l均為已知。現(xiàn)將此系統(tǒng)等效為一單自由度系統(tǒng),請(qǐng)給出其固有頻率()。
?一均質(zhì)等截面直桿兩端固支,長為l,楊氏模量為E,橫截面積為A,體密度為ρ。則此桿縱向振動(dòng)的一階固有頻率為()。
如圖所示兩自由度彈簧質(zhì)量系統(tǒng),各彈簧剛度系數(shù)已在圖中標(biāo)出,各質(zhì)量塊的質(zhì)量為2m1=m2=2m。在各質(zhì)量塊上施加與其自身重力成比例的水平作用力,以此條件下的平衡位移為假設(shè)振型X,利用兩種方式定義(最大勢(shì)能與動(dòng)能之比;柔度法定義)的瑞利商估計(jì)此系統(tǒng)的基頻,記為ω1和ω2。系統(tǒng)基頻的精確值記為ω0,則兩種方式估計(jì)出的基頻的相對(duì)誤差和分別為()。
?如圖所示兩個(gè)相同的圓盤通過一剛度系數(shù)為k的彈簧相連,圓盤在水平面上作純滾動(dòng)。設(shè)圓盤半徑為r,質(zhì)量為。顯然這是一個(gè)兩自由度系統(tǒng),且存在一剛體模式。問系統(tǒng)不等于零的那一個(gè)固有頻率是多少?()