問(wèn)答題設(shè)α1,α2,α3是R3的一組基,β1=α1+α2,β2=α2+α3,β3=α3+α1。證明β1,β2,β3是R3的一組基。
您可能感興趣的試卷
你可能感興趣的試題
1.問(wèn)答題
計(jì)算n(n〉1)階行列式。(要求寫出計(jì)算過(guò)程)
2.問(wèn)答題
計(jì)算行列式。(要求寫出計(jì)算過(guò)程)
5.問(wèn)答題
求多項(xiàng)式的根。(要求寫出計(jì)算過(guò)程)
最新試題
若α1,α2,β線性無(wú)關(guān),以下結(jié)論正確的是()
題型:?jiǎn)雾?xiàng)選擇題
設(shè)A是3×4矩陣,則下列正確的為()
題型:?jiǎn)雾?xiàng)選擇題
設(shè)α1,α2,…,αs∈Rn,該向量組的秩為r,則對(duì)于s和r,當(dāng)()時(shí)向量組線性無(wú)關(guān);當(dāng)()時(shí)向量組線性相關(guān)。
題型:填空題
設(shè)A為3階實(shí)對(duì)稱矩陣,向量ξ1=(1,2,5)T,ξ2=(k,2k,3)T分別對(duì)應(yīng)于特征值2和3的特征向量,則k=()。
題型:填空題
設(shè)R3的基為α1=,α2=,α3=,則β=在基{α1,α2,α3}下的坐標(biāo)為()。
題型:填空題
設(shè)A為3階矩陣,丨A丨=1/2,求丨A*丨=()
題型:?jiǎn)雾?xiàng)選擇題
相似的兩個(gè)矩陣一定相等。()
題型:判斷題
設(shè)A為n階實(shí)對(duì)稱矩陣,C是n階是可逆矩陣,且B=CTAC,則()
題型:?jiǎn)雾?xiàng)選擇題
如果A2-6A=E,則A-1=()
題型:?jiǎn)雾?xiàng)選擇題
向量組的一個(gè)極大線性無(wú)關(guān)組可以取為()
題型:?jiǎn)雾?xiàng)選擇題