A.探索性數(shù)據(jù)分析
B.建模描述
C.預(yù)測建模
D.尋找模式和規(guī)則
您可能感興趣的試卷
你可能感興趣的試題
A.分類
B.聚類
C.關(guān)聯(lián)分析
D.隱馬爾可夫鏈
A.關(guān)聯(lián)規(guī)則發(fā)現(xiàn)
B.聚類
C.分類
D.自然語言處理
最新試題
對于文本數(shù)據(jù)和多媒體數(shù)據(jù)進(jìn)行特征提取是為了方便對于這類數(shù)據(jù)的觀察和理解。
經(jīng)常跟管理層打交道并進(jìn)行有效地關(guān)于商業(yè)領(lǐng)域的討論有助于數(shù)據(jù)科學(xué)項(xiàng)目的成功。
使用偏差較小的模型總是比偏差較大的模型更好。
數(shù)據(jù)索引是保證數(shù)據(jù)處理高性能的軟件角度的一種手段,不做數(shù)據(jù)索引的數(shù)據(jù)訪問是線性訪問,但是做了索引的數(shù)據(jù)訪問會成倍的降低訪問時(shí)間。
數(shù)據(jù)存儲體系中并不牽扯計(jì)算機(jī)網(wǎng)絡(luò)這一環(huán)節(jié)。
使決策樹更深將確保更好的擬合度,但會降低魯棒性。
通常,當(dāng)試圖從大量觀察中學(xué)習(xí)具有少量狀態(tài)的HMM時(shí),我們幾乎總是可以通過允許更多隱藏狀態(tài)來增加訓(xùn)練數(shù)據(jù)的可能性。
使用正則表達(dá)式可以找到一個文本文件中所有可能出現(xiàn)的手機(jī)號碼。
支持向量機(jī)不適合大規(guī)模數(shù)據(jù)。
當(dāng)數(shù)據(jù)集標(biāo)簽錯誤的數(shù)據(jù)點(diǎn)時(shí),隨機(jī)森林通常比AdaBoost更好。