A.算法初步
B.基本初等函數(shù)Ⅱ(三角函數(shù))
C.平面上的向量
D.三角恒等變換
您可能感興趣的試卷
你可能感興趣的試題
數(shù)列極限()。
A.A
B.B
C.C
D.D
袋中有5個(gè)黑球,3個(gè)白球,大小相同,一次隨機(jī)地摸出4個(gè)球,其中恰有3個(gè)白球的概率為()。
A.A
B.B
C.C
D.D
A.14
B.15
C.16
D.17
A.A-1+B-1
B.A+B
C.A(A+B.-1B
D.(A+B.-1
有四個(gè)三角函數(shù)命題:
其中假命題個(gè)數(shù)為()。
A.0
B.1
C.2
D.3
最新試題
,(1)求An;(2)求(A+2E)n。
設(shè)二次函數(shù)f(x)=ax2+bx+c(a>O),方程f(x)-x=O的兩個(gè)根x1,x2滿足。(1)當(dāng)x∈(0,x1)時(shí),證明x;(2)設(shè)函數(shù)f(x)的圖象關(guān)于直線x=x0對(duì)稱,證明。
已知直線l:ax+y=1在矩陣對(duì)應(yīng)的變換作用下變?yōu)橹本€l′:x+by=1。(1)求實(shí)數(shù)a,b的值;(2)若點(diǎn)P(x0,y0),在直線l上,且,求點(diǎn)P的坐標(biāo)。
甲、乙兩人參加某電視臺(tái)舉辦的答題闖關(guān)游戲,按照規(guī)則,甲先從6道備選題中一次性抽取3道題獨(dú)立作答,然后由乙回答剩余3道題,每人答對(duì)其中2道題就停止作答,即闖關(guān)成功,已知在6道備選題中,甲能答對(duì)其中的4道題,乙答對(duì)每道題的概率都是。(1)求甲、乙至少有一人闖關(guān)成功的概率;(2)設(shè)甲答對(duì)題目的個(gè)數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望。
已知橢圓C1、拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn)D,從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:(1)求C1、C2的標(biāo)準(zhǔn)方程:(2)請(qǐng)問(wèn)是否存在直線L滿足條件:①過(guò)C2的焦點(diǎn)F;②與C1交不同兩點(diǎn)M、N,且滿足若存在,求出直線L的方程;若不存在,說(shuō)明理由。
已知,,(1)求tan2α的值:(2)求β。
案例:某教師在對(duì)根與系數(shù)關(guān)系綜合運(yùn)用教學(xué)時(shí),給學(xué)生出了如下一道練習(xí)題:設(shè)α、β是方程x2-2kx+k+6=0的兩個(gè)實(shí)根,則(α-1)2+(β-1)2的最小值是()。A.B.8C.18D.不存在某學(xué)生的解答過(guò)程如下:利用一元二次方程根與系數(shù)的關(guān)系易得:α+β=2k,αβ=k+6所以。故選A。問(wèn)題:(1)指出該生解題過(guò)程中的錯(cuò)誤,分析其錯(cuò)誤原因;(2)給出你的正確解答;(3)指出你在解題時(shí)運(yùn)用的數(shù)學(xué)思想方法。
請(qǐng)簡(jiǎn)要描述數(shù)學(xué)應(yīng)用意識(shí)及推理能力的主要表現(xiàn)。
案例:某教師在對(duì)基本初等函數(shù)進(jìn)行教學(xué)時(shí),給學(xué)生出了如下一道練習(xí)題:?jiǎn)栴}:(1)指出該生解題過(guò)程中的錯(cuò)誤,分析其錯(cuò)誤原因;(2)給出你的正確解答;(3)指出你在解題時(shí)運(yùn)用的數(shù)學(xué)思想方法。
案例:閱讀下列兩位教師的教學(xué)過(guò)程。教師甲的教學(xué)過(guò)程:師:在一個(gè)風(fēng)雨交加的夜里,從某水庫(kù)閘房到防洪指揮部的電話線路發(fā)生了故障。這是一條10km長(zhǎng)的線路,如何迅速查出故障所在?如果沿著線路一小段一小段查找,困難很多。每查一個(gè)點(diǎn)要爬一次10km長(zhǎng)的電線桿子,大約有200多根電線桿子呢。想一想,維修線路的工人師傅怎樣工作最合理?生1:直接一個(gè)個(gè)電線桿去尋找。生2:先找中點(diǎn),縮小范圍,再找剩下來(lái)一半的中點(diǎn)。師:生2的方法是不是對(duì)呢?我們一起來(lái)考慮一下。如圖,維修工人首先從中點(diǎn)C查,用隨身帶的話機(jī)向兩個(gè)端點(diǎn)測(cè)試時(shí),發(fā)現(xiàn)AC段正常,斷定故障在BC段,再到BC段中點(diǎn)D,這次發(fā)現(xiàn)BD段正常,可見(jiàn)故障在CD段,再到CD中點(diǎn)E來(lái)查。每查一次,可以把待查的線路長(zhǎng)度縮減一半,如此查下去,不用幾次,就能把故障點(diǎn)鎖定在一兩根電線桿附近。師:我們可以用一個(gè)動(dòng)態(tài)過(guò)程來(lái)展示一下(展示多媒體課件)。在一條線段上找某個(gè)特定點(diǎn),可以通過(guò)取中點(diǎn)的方法逐步縮小特定點(diǎn)所在的范圍(即二分法思想)。教師乙的教學(xué)過(guò)程:師:大家都看過(guò)李詠主持的《幸運(yùn)52》吧,今天咱也試一回(出示游戲:看商品、猜價(jià)格)。生:積極參與游戲,課堂氣氛活躍。師:競(jìng)猜中,"高了"、"低了"的含義是什么?如何確定價(jià)格的最可能的范圍?生:主持人"高了、低了"的回答是判斷價(jià)格所在區(qū)間的依據(jù)。師:如何才能更快的猜中商品的預(yù)定價(jià)格?生:回答各異。老師由此引導(dǎo)學(xué)生說(shuō)出"二分法"的思想,并向同學(xué)們引出二分法的概念。問(wèn)題:(1)分析兩種情景引入的特點(diǎn)。(2)結(jié)合案例,說(shuō)明為什么要學(xué)習(xí)用二分法求方程的近似解。