案例:某教師在對(duì)根與系數(shù)關(guān)系綜合運(yùn)用教學(xué)時(shí),給學(xué)生出了如下一道練習(xí)題:
設(shè)α、β是方程x2-2kx+k+6=0的兩個(gè)實(shí)根,則(α-1)2+(β-1)2的最小值是()。
A.
B.8
C.18
D.不存在
某學(xué)生的解答過程如下:
利用一元二次方程根與系數(shù)的關(guān)系易得:α+β=2k,αβ=k+6
所以。故選A。
問題:(1)指出該生解題過程中的錯(cuò)誤,分析其錯(cuò)誤原因;
(2)給出你的正確解答;
(3)指出你在解題時(shí)運(yùn)用的數(shù)學(xué)思想方法。
您可能感興趣的試卷
最新試題
已知橢圓C1、拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn)D,從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:(1)求C1、C2的標(biāo)準(zhǔn)方程:(2)請(qǐng)問是否存在直線L滿足條件:①過C2的焦點(diǎn)F;②與C1交不同兩點(diǎn)M、N,且滿足若存在,求出直線L的方程;若不存在,說明理由。
請(qǐng)簡(jiǎn)要描述數(shù)學(xué)應(yīng)用意識(shí)及推理能力的主要表現(xiàn)。
論述實(shí)施合作學(xué)習(xí)應(yīng)注意的幾個(gè)問題。
高中"集合與函數(shù)概念實(shí)習(xí)作業(yè)"設(shè)定的教學(xué)目標(biāo)如下:①了解函數(shù)概念的形成、發(fā)展的歷史以及在這個(gè)過程中起重大作用的歷史事件和人物;②體驗(yàn)合作學(xué)習(xí)的方式,通過合作學(xué)習(xí)品嘗分享獲得知識(shí)的快樂;③在合作形式的小組學(xué)習(xí)活動(dòng)中培養(yǎng)學(xué)生的領(lǐng)導(dǎo)意識(shí)、社會(huì)實(shí)踐技能和民主價(jià)值觀。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo),設(shè)計(jì)一個(gè)合理的課堂準(zhǔn)備;(2)確定本節(jié)課的教學(xué)重點(diǎn)和難點(diǎn);(3)給出本節(jié)課的教學(xué)過程。
如何理解高中數(shù)學(xué)課程的過程性目標(biāo)?
一商家銷售某種商品的價(jià)格滿足關(guān)系P=7-0.2x(萬元/噸),其中x為銷售量,該商品的成本函數(shù)為C=3x+1(萬元)。(1)若每銷售一噸商品,政府要征稅t萬元,求該商家獲最大利潤(rùn)時(shí)的銷售量;(2)t為何值時(shí),政府稅收總額最大?
在高中數(shù)學(xué)課程中為什么要講微積分初步?
請(qǐng)以"三角函數(shù)的積化和差與和差化積"為課題,完成下列教學(xué)設(shè)計(jì)。(1)教學(xué)目標(biāo);(2)教學(xué)重點(diǎn)、難點(diǎn);(3)教學(xué)過程(只要求寫出新課導(dǎo)入和新知探究、鞏固、應(yīng)用等)及設(shè)計(jì)意圖。
在某次海軍演習(xí)中,已知甲驅(qū)逐艦在航母的南偏東15°方向且與航母的距離為12海里,乙護(hù)衛(wèi)艦在甲驅(qū)逐艦的正西方向,若測(cè)得乙護(hù)衛(wèi)艦在航母的南偏西45°方向,則甲驅(qū)逐艦與乙護(hù)衛(wèi)艦的距離為()海里。
如何處理面向全體學(xué)生與關(guān)注學(xué)生個(gè)體差異的關(guān)系?