A.建構(gòu)神經(jīng)網(wǎng)絡(luò)時需要知道最終的函數(shù)學(xué)習(xí)機(jī)長什么樣子
B.打造一個神經(jīng)網(wǎng)絡(luò)的函數(shù)學(xué)習(xí)機(jī)是透過編程來達(dá)成
C.神經(jīng)網(wǎng)絡(luò)模型可分成輸入層、表現(xiàn)層及輸出層
D.神經(jīng)網(wǎng)絡(luò)模型可分成輸入層、隱藏層及輸出層
E.神經(jīng)網(wǎng)絡(luò)模型可分成輸入層、激發(fā)層及輸出層
您可能感興趣的試卷
你可能感興趣的試題
A.判定樹可以是多元樹
B.判定樹的起始點(diǎn)稱為根節(jié)點(diǎn)
C.判定樹是一種分群的機(jī)器學(xué)習(xí)技術(shù)
D.判定樹上的內(nèi)部節(jié)點(diǎn)代表一個特征值
E.判定樹上的樹葉就是代表一種分類結(jié)果
A.支持向量機(jī)的分類函數(shù)稱為核函數(shù)(kernelfunction)
B.核函數(shù)(kernelfunction)都是非線性的
C.核函數(shù)可以多項式核函數(shù)及徑向基核函數(shù)
D.利用核函數(shù)的變化,可以將原先在低維度空間無法分類的問題轉(zhuǎn)到高維度空間達(dá)以達(dá)成需要的分類效果
E.支持向量機(jī)可以透過核函數(shù)的轉(zhuǎn)換,簡化分類的困難度
A.分群問題被定義為:將未知的新訊息歸納進(jìn)已知的信息中
B.機(jī)器學(xué)習(xí)領(lǐng)域中的分群問題,重點(diǎn)在于新的數(shù)據(jù)和已分類的數(shù)據(jù)互相比較,看看新數(shù)據(jù)在分類過的數(shù)據(jù)中,和哪一類數(shù)據(jù)比較類似
C.分類問題就是一群數(shù)據(jù)中沒有明確的分類或群體,而是必須透過它們所具有的特
D.分群的問題要事先幫數(shù)據(jù)做卷標(biāo)(label)
E.分群的基礎(chǔ)在于要根據(jù)可以區(qū)分出兩種群體的特征來分群
A.算法、復(fù)雜的軟件、計算機(jī)計算能力
B.算法、無適當(dāng)?shù)臄?shù)據(jù)庫、計算機(jī)計算能力
C.缺強(qiáng)大的操作系統(tǒng)、無適當(dāng)?shù)臄?shù)據(jù)庫、計算機(jī)計算能力
D.復(fù)雜的軟件、計算機(jī)計算能力、大量的數(shù)據(jù)
E.無適當(dāng)?shù)臄?shù)據(jù)庫、計算機(jī)計算能力、大量的數(shù)據(jù)
A.收集歷史資料
B.把問題化成函數(shù)的形式
C.先問一個問題
D.學(xué)習(xí)(訓(xùn)練)
E.打造一個函數(shù)學(xué)習(xí)機(jī)
最新試題
相對化學(xué)沉淀等傳統(tǒng)工藝而言,萃取工藝的主要優(yōu)點(diǎn)是()。
反向傳播算法的基本原理是基于什么()?
根據(jù)新數(shù)據(jù)集的大小和數(shù)據(jù)集的相似程度,下列選項不屬于遷移學(xué)習(xí)方法情況的是的是()。
在深度學(xué)習(xí)模型訓(xùn)練中,哪些技術(shù)可以用于加速模型收斂和提高穩(wěn)定性()?
進(jìn)行模型訓(xùn)練之前,需要先把標(biāo)注好的數(shù)據(jù)進(jìn)行分類。訓(xùn)練有監(jiān)督學(xué)習(xí)模型時會將數(shù)據(jù)集劃分為()。
在自然語言處理中,哪些技術(shù)適用于提升問答系統(tǒng)的性能()?
在深度學(xué)習(xí)模型訓(xùn)練中,"早停法"(EarlyStopping)策略的應(yīng)用目的是什么()?
在自然語言處理中,哪些方法可以用于提升自動文本摘要的生成效果()?
反向傳播算法和梯度下降算法在神經(jīng)網(wǎng)絡(luò)訓(xùn)練中的主要區(qū)別是什么()?
在自然語言處理中,哪些技術(shù)可以用于改善實(shí)體識別和文本生成任務(wù)的性能()?