單項選擇題有矩A3*2,B2*3,C3*3下列運(yùn)算正確的是()。

A.AC
B.ABC
C.AB-BC
D.AC+BC


您可能感興趣的試卷

你可能感興趣的試題

1.單項選擇題設(shè)a,b是兩個非零向量,則下面說法正確的是()。

A.若|a+b|=|a|-|b|,則a⊥b
B.若a⊥b,則|a+b|=|a|-|b|
C.若|a+b|=|a|-|b|,則存在實(shí)數(shù)λ,使得a=λb
D.若存在實(shí)數(shù)λ,使得a=λb,則|a+b|=|a|-|b|

4.單項選擇題

,則sin2θ=()。

A.
B.
C.
D.

5.單項選擇題下列命題中,假命題為()。

A.存在四邊相等的四邊形不是正方形
B.z1,z10∈C,為實(shí)數(shù)的充分必要條件是z1、z2互為共軛復(fù)數(shù)
C.若x,y∈R,且x+y>2,則x,y至少有一個大于1
D.對于任意n∈N,Cn0+Cn1,…+Cnn:都是偶數(shù)

最新試題

求.

題型:問答題

案例:閱讀下列兩位教師的教學(xué)過程。教師甲的教學(xué)過程:師:在一個風(fēng)雨交加的夜里,從某水庫閘房到防洪指揮部的電話線路發(fā)生了故障。這是一條10km長的線路,如何迅速查出故障所在?如果沿著線路一小段一小段查找,困難很多。每查一個點(diǎn)要爬一次10km長的電線桿子,大約有200多根電線桿子呢。想一想,維修線路的工人師傅怎樣工作最合理?生1:直接一個個電線桿去尋找。生2:先找中點(diǎn),縮小范圍,再找剩下來一半的中點(diǎn)。師:生2的方法是不是對呢?我們一起來考慮一下。如圖,維修工人首先從中點(diǎn)C查,用隨身帶的話機(jī)向兩個端點(diǎn)測試時,發(fā)現(xiàn)AC段正常,斷定故障在BC段,再到BC段中點(diǎn)D,這次發(fā)現(xiàn)BD段正常,可見故障在CD段,再到CD中點(diǎn)E來查。每查一次,可以把待查的線路長度縮減一半,如此查下去,不用幾次,就能把故障點(diǎn)鎖定在一兩根電線桿附近。師:我們可以用一個動態(tài)過程來展示一下(展示多媒體課件)。在一條線段上找某個特定點(diǎn),可以通過取中點(diǎn)的方法逐步縮小特定點(diǎn)所在的范圍(即二分法思想)。教師乙的教學(xué)過程:師:大家都看過李詠主持的《幸運(yùn)52》吧,今天咱也試一回(出示游戲:看商品、猜價格)。生:積極參與游戲,課堂氣氛活躍。師:競猜中,"高了"、"低了"的含義是什么?如何確定價格的最可能的范圍?生:主持人"高了、低了"的回答是判斷價格所在區(qū)間的依據(jù)。師:如何才能更快的猜中商品的預(yù)定價格?生:回答各異。老師由此引導(dǎo)學(xué)生說出"二分法"的思想,并向同學(xué)們引出二分法的概念。問題:(1)分析兩種情景引入的特點(diǎn)。(2)結(jié)合案例,說明為什么要學(xué)習(xí)用二分法求方程的近似解。

題型:問答題

已知等差數(shù)列{an}滿足:a3=7,a5+a7=26。{an}的前n項和為S。(1)求an及Sn;(2)令.求數(shù)列{bn}的前n項和Tn。

題型:問答題

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系。已知點(diǎn)A的極坐標(biāo)為,直線l的極坐標(biāo)方程為,且點(diǎn)A在直線l上。(1)求α的值及直線ι的直角坐標(biāo)方程:(2)圓c的參數(shù)方程為,試判斷直線l與圓C的位置關(guān)系。

題型:問答題

如何理解高中數(shù)學(xué)課程的過程性目標(biāo)?

題型:問答題

為什么在數(shù)學(xué)教學(xué)中要貫徹理論與實(shí)際相結(jié)合的原則?

題型:問答題

已知直線l:ax+y=1在矩陣對應(yīng)的變換作用下變?yōu)橹本€l′:x+by=1。(1)求實(shí)數(shù)a,b的值;(2)若點(diǎn)P(x0,y0),在直線l上,且,求點(diǎn)P的坐標(biāo)。

題型:問答題

設(shè)二次函數(shù)f(x)=ax2+bx+c(a>O),方程f(x)-x=O的兩個根x1,x2滿足。(1)當(dāng)x∈(0,x1)時,證明x;(2)設(shè)函數(shù)f(x)的圖象關(guān)于直線x=x0對稱,證明。

題型:問答題

甲、乙兩人參加某電視臺舉辦的答題闖關(guān)游戲,按照規(guī)則,甲先從6道備選題中一次性抽取3道題獨(dú)立作答,然后由乙回答剩余3道題,每人答對其中2道題就停止作答,即闖關(guān)成功,已知在6道備選題中,甲能答對其中的4道題,乙答對每道題的概率都是。(1)求甲、乙至少有一人闖關(guān)成功的概率;(2)設(shè)甲答對題目的個數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望。

題型:問答題

論述實(shí)施合作學(xué)習(xí)應(yīng)注意的幾個問題。

題型:問答題