求.
您可能感興趣的試卷
最新試題
案例:下面是一位老師在講"簡(jiǎn)單幾何體的三視圖"的教學(xué)片斷,請(qǐng)閱讀后回答問(wèn)題:創(chuàng)設(shè)問(wèn)題情境,從學(xué)生熟悉的古詩(shī)入手,引出課題。多媒體顯示:題西林壁--蘇軾橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同。不識(shí)廬山真面目,只緣身在此山中。師:大家看大屏幕,一起朗讀這首詩(shī)。師:哪位同學(xué)能說(shuō)說(shuō)蘇東坡是怎樣觀(guān)察廬山的嗎?都有什么感覺(jué)?生:橫看,側(cè)看,遠(yuǎn)看,近看,高看,低看。都得到不同的效果。師:回答得非常好??赡苡行┩瑢W(xué)會(huì)納悶,今天老師上數(shù)學(xué)課怎么會(huì)念起古詩(shī)來(lái)?其實(shí),這首詩(shī)隱含著一些數(shù)學(xué)知識(shí)。它教會(huì)了我們?cè)鯓佑^(guān)察物體,這也是我們這節(jié)課將要學(xué)習(xí)的內(nèi)容--簡(jiǎn)單組合體的三視圖(寫(xiě)板書(shū))。問(wèn)題:(1)該教師的課堂引入有什么特色,對(duì)教學(xué)有什么好處?(2)簡(jiǎn)單談?wù)剶?shù)學(xué)教學(xué)過(guò)程中怎樣調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情激發(fā)學(xué)習(xí)興趣。
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系。已知點(diǎn)A的極坐標(biāo)為,直線(xiàn)l的極坐標(biāo)方程為,且點(diǎn)A在直線(xiàn)l上。(1)求α的值及直線(xiàn)ι的直角坐標(biāo)方程:(2)圓c的參數(shù)方程為,試判斷直線(xiàn)l與圓C的位置關(guān)系。
高中"隨機(jī)抽樣"設(shè)定的教學(xué)目標(biāo)如下:①通過(guò)對(duì)具體的案例分析,逐步學(xué)會(huì)從現(xiàn)實(shí)生活中提出具有一定價(jià)值的統(tǒng)計(jì)問(wèn)題;②結(jié)合具體的實(shí)際問(wèn)題情境,理解隨機(jī)抽樣的必要性和重要性;③以問(wèn)題鏈的形式深刻理解樣本的代表性。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo)①,設(shè)計(jì)至少兩個(gè)問(wèn)題,并說(shuō)明設(shè)計(jì)意圖;(2)根據(jù)教學(xué)目標(biāo)②,給出至少兩個(gè)實(shí)例,并說(shuō)明設(shè)計(jì)意圖;(3)根據(jù)教學(xué)目標(biāo)③,設(shè)計(jì)問(wèn)題鏈(至少包含兩個(gè)問(wèn)題),并說(shuō)明設(shè)計(jì)意圖;(4)相對(duì)義務(wù)教育階段的統(tǒng)計(jì)教學(xué),本節(jié)課的教學(xué)重點(diǎn)是什么?(5)作為高中階段的起始課,其難點(diǎn)是什么?(6)本節(jié)課的教學(xué)內(nèi)容對(duì)后續(xù)哪些內(nèi)容的學(xué)習(xí)有直接影響?
高中"方程的根與函數(shù)的零點(diǎn)"(第一節(jié)課)設(shè)定的教學(xué)目標(biāo)如下:①通過(guò)對(duì)二次函數(shù)圖象的描繪,了解函數(shù)零點(diǎn)的概念,滲透由具體到抽象思想,領(lǐng)會(huì)函數(shù)零點(diǎn)與相應(yīng)方程實(shí)數(shù)根之間的關(guān)系,②理解提出零點(diǎn)概念的作用,溝通函數(shù)與方程的關(guān)系。③通過(guò)對(duì)現(xiàn)實(shí)問(wèn)題的分析,體會(huì)用函數(shù)系統(tǒng)的角度去思考方程的思想,使學(xué)生理解動(dòng)與靜的辨證關(guān)系。掌握函數(shù)零點(diǎn)存在性的判斷。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo),設(shè)計(jì)一個(gè)問(wèn)題引入,并說(shuō)明設(shè)計(jì)意圖;(2)根據(jù)教學(xué)目標(biāo)①,設(shè)計(jì)問(wèn)題鏈(至少包含三個(gè)問(wèn)題),并說(shuō)明設(shè)計(jì)意圖;(3)根據(jù)教學(xué)目標(biāo)③,給出至少一個(gè)實(shí)例和三個(gè)問(wèn)題,并說(shuō)明設(shè)計(jì)意圖;(4)確定本節(jié)課的教學(xué)重點(diǎn);(5)作為高中階段的基礎(chǔ)內(nèi)容,其難點(diǎn)是什么?(6)本節(jié)課的教學(xué)內(nèi)容對(duì)后續(xù)哪些內(nèi)容的學(xué)習(xí)有直接影響?
求.
已知向量a,b,滿(mǎn)足a=b=1,且,其中k>0。(1)試用k表示a·b,并求出a·b的最大值及此時(shí)a與b的夾角θ的值;(2)當(dāng)a·b取得最大值時(shí),求實(shí)數(shù)λ,使a+λb的值最小,并對(duì)這一結(jié)論作出幾何解釋。
高中"集合與函數(shù)概念實(shí)習(xí)作業(yè)"設(shè)定的教學(xué)目標(biāo)如下:①了解函數(shù)概念的形成、發(fā)展的歷史以及在這個(gè)過(guò)程中起重大作用的歷史事件和人物;②體驗(yàn)合作學(xué)習(xí)的方式,通過(guò)合作學(xué)習(xí)品嘗分享獲得知識(shí)的快樂(lè);③在合作形式的小組學(xué)習(xí)活動(dòng)中培養(yǎng)學(xué)生的領(lǐng)導(dǎo)意識(shí)、社會(huì)實(shí)踐技能和民主價(jià)值觀(guān)。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo),設(shè)計(jì)一個(gè)合理的課堂準(zhǔn)備;(2)確定本節(jié)課的教學(xué)重點(diǎn)和難點(diǎn);(3)給出本節(jié)課的教學(xué)過(guò)程。
請(qǐng)以"直線(xiàn)與平面平行的判定"為課題,完成下列教學(xué)設(shè)計(jì)。(1)教學(xué)目標(biāo)(2)本節(jié)課的教學(xué)重、難點(diǎn)(3)寫(xiě)出新課引入和新知探究、鞏固、應(yīng)用等及設(shè)計(jì)意圖
一商家銷(xiāo)售某種商品的價(jià)格滿(mǎn)足關(guān)系P=7-0.2x(萬(wàn)元/噸),其中x為銷(xiāo)售量,該商品的成本函數(shù)為C=3x+1(萬(wàn)元)。(1)若每銷(xiāo)售一噸商品,政府要征稅t萬(wàn)元,求該商家獲最大利潤(rùn)時(shí)的銷(xiāo)售量;(2)t為何值時(shí),政府稅收總額最大?
,(1)求An;(2)求(A+2E)n。