問(wèn)答題

請(qǐng)以"直線(xiàn)與平面平行的判定"為課題,完成下列教學(xué)設(shè)計(jì)。
(1)教學(xué)目標(biāo)
(2)本節(jié)課的教學(xué)重、難點(diǎn)
(3)寫(xiě)出新課引入和新知探究、鞏固、應(yīng)用等及設(shè)計(jì)意圖


您可能感興趣的試卷

你可能感興趣的試題

3.問(wèn)答題

高中"方程的根與函數(shù)的零點(diǎn)"(第一節(jié)課)設(shè)定的教學(xué)目標(biāo)如下:
①通過(guò)對(duì)二次函數(shù)圖象的描繪,了解函數(shù)零點(diǎn)的概念,滲透由具體到抽象思想,領(lǐng)會(huì)函數(shù)零點(diǎn)與相應(yīng)方程實(shí)數(shù)根之間的關(guān)系,
②理解提出零點(diǎn)概念的作用,溝通函數(shù)與方程的關(guān)系。
③通過(guò)對(duì)現(xiàn)實(shí)問(wèn)題的分析,體會(huì)用函數(shù)系統(tǒng)的角度去思考方程的思想,使學(xué)生理解動(dòng)與靜的辨證關(guān)系。掌握函數(shù)零點(diǎn)存在性的判斷。
完成下列任務(wù):
(1)根據(jù)教學(xué)目標(biāo),設(shè)計(jì)一個(gè)問(wèn)題引入,并說(shuō)明設(shè)計(jì)意圖;
(2)根據(jù)教學(xué)目標(biāo)①,設(shè)計(jì)問(wèn)題鏈(至少包含三個(gè)問(wèn)題),并說(shuō)明設(shè)計(jì)意圖;
(3)根據(jù)教學(xué)目標(biāo)③,給出至少一個(gè)實(shí)例和三個(gè)問(wèn)題,并說(shuō)明設(shè)計(jì)意圖;
(4)確定本節(jié)課的教學(xué)重點(diǎn);
(5)作為高中階段的基礎(chǔ)內(nèi)容,其難點(diǎn)是什么?
(6)本節(jié)課的教學(xué)內(nèi)容對(duì)后續(xù)哪些內(nèi)容的學(xué)習(xí)有直接影響?

5.問(wèn)答題

案例:閱讀下列兩位教師的教學(xué)過(guò)程。
教師甲的教學(xué)過(guò)程:
師:在一個(gè)風(fēng)雨交加的夜里,從某水庫(kù)閘房到防洪指揮部的電話(huà)線(xiàn)路發(fā)生了故障。這是一條10km長(zhǎng)的線(xiàn)路,如何迅速查出故障所在?
如果沿著線(xiàn)路一小段一小段查找,困難很多。每查一個(gè)點(diǎn)要爬一次10km長(zhǎng)的電線(xiàn)桿子,大約有200多根電線(xiàn)桿子呢。想一想,維修線(xiàn)路的工人師傅怎樣工作最合理?
生1:直接一個(gè)個(gè)電線(xiàn)桿去尋找。
生2:先找中點(diǎn),縮小范圍,再找剩下來(lái)一半的中點(diǎn)。
師:生2的方法是不是對(duì)呢?我們一起來(lái)考慮一下。

如圖,維修工人首先從中點(diǎn)C查,用隨身帶的話(huà)機(jī)向兩個(gè)端點(diǎn)測(cè)試時(shí),發(fā)現(xiàn)AC段正常,斷定故障在BC段,再到BC段中點(diǎn)D,這次發(fā)現(xiàn)BD段正常,可見(jiàn)故障在CD段,再到CD中點(diǎn)E來(lái)查。每查一次,可以把待查的線(xiàn)路長(zhǎng)度縮減一半,如此查下去,不用幾次,就能把故障點(diǎn)鎖定在一兩根電線(xiàn)桿附近。
師:我們可以用一個(gè)動(dòng)態(tài)過(guò)程來(lái)展示一下(展示多媒體課件)。
在一條線(xiàn)段上找某個(gè)特定點(diǎn),可以通過(guò)取中點(diǎn)的方法逐步縮小特定點(diǎn)所在的范圍(即二分法思想)。
教師乙的教學(xué)過(guò)程:
師:大家都看過(guò)李詠主持的《幸運(yùn)52》吧,今天咱也試一回(出示游戲:看商品、猜價(jià)格)。
生:積極參與游戲,課堂氣氛活躍。
師:競(jìng)猜中,"高了"、"低了"的含義是什么?如何確定價(jià)格的最可能的范圍?
生:主持人"高了、低了"的回答是判斷價(jià)格所在區(qū)間的依據(jù)。
師:如何才能更快的猜中商品的預(yù)定價(jià)格?
生:回答各異。
老師由此引導(dǎo)學(xué)生說(shuō)出"二分法"的思想,并向同學(xué)們引出二分法的概念。
問(wèn)題:
(1)分析兩種情景引入的特點(diǎn)。
(2)結(jié)合案例,說(shuō)明為什么要學(xué)習(xí)用二分法求方程的近似解。

最新試題

甲、乙兩人參加某電視臺(tái)舉辦的答題闖關(guān)游戲,按照規(guī)則,甲先從6道備選題中一次性抽取3道題獨(dú)立作答,然后由乙回答剩余3道題,每人答對(duì)其中2道題就停止作答,即闖關(guān)成功,已知在6道備選題中,甲能答對(duì)其中的4道題,乙答對(duì)每道題的概率都是。(1)求甲、乙至少有一人闖關(guān)成功的概率;(2)設(shè)甲答對(duì)題目的個(gè)數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望。

題型:?jiǎn)柎痤}

高中"方程的根與函數(shù)的零點(diǎn)"(第一節(jié)課)設(shè)定的教學(xué)目標(biāo)如下:①通過(guò)對(duì)二次函數(shù)圖象的描繪,了解函數(shù)零點(diǎn)的概念,滲透由具體到抽象思想,領(lǐng)會(huì)函數(shù)零點(diǎn)與相應(yīng)方程實(shí)數(shù)根之間的關(guān)系,②理解提出零點(diǎn)概念的作用,溝通函數(shù)與方程的關(guān)系。③通過(guò)對(duì)現(xiàn)實(shí)問(wèn)題的分析,體會(huì)用函數(shù)系統(tǒng)的角度去思考方程的思想,使學(xué)生理解動(dòng)與靜的辨證關(guān)系。掌握函數(shù)零點(diǎn)存在性的判斷。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo),設(shè)計(jì)一個(gè)問(wèn)題引入,并說(shuō)明設(shè)計(jì)意圖;(2)根據(jù)教學(xué)目標(biāo)①,設(shè)計(jì)問(wèn)題鏈(至少包含三個(gè)問(wèn)題),并說(shuō)明設(shè)計(jì)意圖;(3)根據(jù)教學(xué)目標(biāo)③,給出至少一個(gè)實(shí)例和三個(gè)問(wèn)題,并說(shuō)明設(shè)計(jì)意圖;(4)確定本節(jié)課的教學(xué)重點(diǎn);(5)作為高中階段的基礎(chǔ)內(nèi)容,其難點(diǎn)是什么?(6)本節(jié)課的教學(xué)內(nèi)容對(duì)后續(xù)哪些內(nèi)容的學(xué)習(xí)有直接影響?

題型:?jiǎn)柎痤}

請(qǐng)以"直線(xiàn)與平面平行的判定"為課題,完成下列教學(xué)設(shè)計(jì)。(1)教學(xué)目標(biāo)(2)本節(jié)課的教學(xué)重、難點(diǎn)(3)寫(xiě)出新課引入和新知探究、鞏固、應(yīng)用等及設(shè)計(jì)意圖

題型:?jiǎn)柎痤}

已知等差數(shù)列{an}滿(mǎn)足:a3=7,a5+a7=26。{an}的前n項(xiàng)和為S。(1)求an及Sn;(2)令.求數(shù)列{bn}的前n項(xiàng)和Tn。

題型:?jiǎn)柎痤}

已知數(shù)列{an}中,a1=1,且(1)求證:數(shù)列是等差數(shù)列;(2)求數(shù)列{an}的通項(xiàng)公式。

題型:?jiǎn)柎痤}

在某次海軍演習(xí)中,已知甲驅(qū)逐艦在航母的南偏東15°方向且與航母的距離為12海里,乙護(hù)衛(wèi)艦在甲驅(qū)逐艦的正西方向,若測(cè)得乙護(hù)衛(wèi)艦在航母的南偏西45°方向,則甲驅(qū)逐艦與乙護(hù)衛(wèi)艦的距離為()海里。

題型:填空題

一圓與y軸相切,圓心在x-3y=0上,在y=x上截得的弦長(zhǎng)為,求圓的方程。

題型:?jiǎn)柎痤}

已知向量a,b,滿(mǎn)足a=b=1,且,其中k>0。(1)試用k表示a·b,并求出a·b的最大值及此時(shí)a與b的夾角θ的值;(2)當(dāng)a·b取得最大值時(shí),求實(shí)數(shù)λ,使a+λb的值最小,并對(duì)這一結(jié)論作出幾何解釋。

題型:?jiǎn)柎痤}

案例:某教師在對(duì)基本初等函數(shù)進(jìn)行教學(xué)時(shí),給學(xué)生出了如下一道練習(xí)題:?jiǎn)栴}:(1)指出該生解題過(guò)程中的錯(cuò)誤,分析其錯(cuò)誤原因;(2)給出你的正確解答;(3)指出你在解題時(shí)運(yùn)用的數(shù)學(xué)思想方法。

題型:?jiǎn)柎痤}

已知,,(1)求tan2α的值:(2)求β。

題型:?jiǎn)柎痤}