單項(xiàng)選擇題設(shè)a,b是兩個(gè)非零向量,則下面說法正確的是()。

A.若|a+b|=|a|-|b|,則a⊥b
B.若a⊥b,則|a+b|=|a|-|b|
C.若|a+b|=|a|-|b|,則存在實(shí)數(shù)λ,使得a=λb
D.若存在實(shí)數(shù)λ,使得a=λb,則|a+b|=|a|-|b|


您可能感興趣的試卷

你可能感興趣的試題

3.單項(xiàng)選擇題

,則sin2θ=()。

A.
B.
C.
D.

4.單項(xiàng)選擇題下列命題中,假命題為()。

A.存在四邊相等的四邊形不是正方形
B.z1,z10∈C,為實(shí)數(shù)的充分必要條件是z1、z2互為共軛復(fù)數(shù)
C.若x,y∈R,且x+y>2,則x,y至少有一個(gè)大于1
D.對于任意n∈N,Cn0+Cn1,…+Cnn:都是偶數(shù)

5.單項(xiàng)選擇題

設(shè)函數(shù)z=x2y,則等于()。

A.1
B.2
C.1+
D.2+

最新試題

已知橢圓C1、拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn)D,從每條曲線上取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:(1)求C1、C2的標(biāo)準(zhǔn)方程:(2)請問是否存在直線L滿足條件:①過C2的焦點(diǎn)F;②與C1交不同兩點(diǎn)M、N,且滿足若存在,求出直線L的方程;若不存在,說明理由。

題型:問答題

高中"集合與函數(shù)概念實(shí)習(xí)作業(yè)"設(shè)定的教學(xué)目標(biāo)如下:①了解函數(shù)概念的形成、發(fā)展的歷史以及在這個(gè)過程中起重大作用的歷史事件和人物;②體驗(yàn)合作學(xué)習(xí)的方式,通過合作學(xué)習(xí)品嘗分享獲得知識的快樂;③在合作形式的小組學(xué)習(xí)活動(dòng)中培養(yǎng)學(xué)生的領(lǐng)導(dǎo)意識、社會(huì)實(shí)踐技能和民主價(jià)值觀。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo),設(shè)計(jì)一個(gè)合理的課堂準(zhǔn)備;(2)確定本節(jié)課的教學(xué)重點(diǎn)和難點(diǎn);(3)給出本節(jié)課的教學(xué)過程。

題型:問答題

為什么在數(shù)學(xué)教學(xué)中要貫徹理論與實(shí)際相結(jié)合的原則?

題型:問答題

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系。已知點(diǎn)A的極坐標(biāo)為,直線l的極坐標(biāo)方程為,且點(diǎn)A在直線l上。(1)求α的值及直線ι的直角坐標(biāo)方程:(2)圓c的參數(shù)方程為,試判斷直線l與圓C的位置關(guān)系。

題型:問答題

設(shè)f(x),g(x)在[0,1]上的導(dǎo)數(shù)連續(xù),且f(0)=0,f′(x)≥0,g′(x)≥0。證明:對任何a∈[O,1],有

題型:問答題

一商家銷售某種商品的價(jià)格滿足關(guān)系P=7-0.2x(萬元/噸),其中x為銷售量,該商品的成本函數(shù)為C=3x+1(萬元)。(1)若每銷售一噸商品,政府要征稅t萬元,求該商家獲最大利潤時(shí)的銷售量;(2)t為何值時(shí),政府稅收總額最大?

題型:問答題

高中"等差數(shù)列"設(shè)定的教學(xué)目標(biāo)如下:①通過實(shí)例,理解等差數(shù)列的概念,探索并掌握等差數(shù)列的通項(xiàng)公式;②能在具體的問題情境中,發(fā)現(xiàn)數(shù)列的等差關(guān)系并能用有關(guān)知識解決相應(yīng)的問題,體會(huì)等差數(shù)列與一次函數(shù)的關(guān)系:③讓學(xué)生對日常生活中的實(shí)際問題進(jìn)行分析,引導(dǎo)學(xué)生通過觀察,推導(dǎo),歸納抽象出等差數(shù)列的概念:由學(xué)生建立等差數(shù)列模型用相關(guān)知識解決一些簡單的問題,進(jìn)行等差數(shù)列通項(xiàng)公式應(yīng)用的實(shí)踐操作并在操作過程中,通過類比函數(shù)概念、性質(zhì)、表達(dá)式得到對等差數(shù)列相應(yīng)問題的研究。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo)①,給出至少三個(gè)實(shí)例,并說明設(shè)計(jì)意圖;(2)根據(jù)教學(xué)目標(biāo)②,設(shè)計(jì)至少兩個(gè)問題,讓學(xué)生用等差數(shù)列求解,并說明設(shè)計(jì)意圖;(3)確定本節(jié)課的教學(xué)重點(diǎn);(4)作為高中階段的重點(diǎn)內(nèi)容,其難點(diǎn)是什么?(5)本節(jié)課的教學(xué)內(nèi)容對后續(xù)哪些內(nèi)容的學(xué)習(xí)有直接影響?

題型:問答題

請以"直線與平面平行的判定"為課題,完成下列教學(xué)設(shè)計(jì)。(1)教學(xué)目標(biāo)(2)本節(jié)課的教學(xué)重、難點(diǎn)(3)寫出新課引入和新知探究、鞏固、應(yīng)用等及設(shè)計(jì)意圖

題型:問答題

案例:下面是一位老師在講"簡單幾何體的三視圖"的教學(xué)片斷,請閱讀后回答問題:創(chuàng)設(shè)問題情境,從學(xué)生熟悉的古詩入手,引出課題。多媒體顯示:題西林壁--蘇軾橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同。不識廬山真面目,只緣身在此山中。師:大家看大屏幕,一起朗讀這首詩。師:哪位同學(xué)能說說蘇東坡是怎樣觀察廬山的嗎?都有什么感覺?生:橫看,側(cè)看,遠(yuǎn)看,近看,高看,低看。都得到不同的效果。師:回答得非常好??赡苡行┩瑢W(xué)會(huì)納悶,今天老師上數(shù)學(xué)課怎么會(huì)念起古詩來?其實(shí),這首詩隱含著一些數(shù)學(xué)知識。它教會(huì)了我們怎樣觀察物體,這也是我們這節(jié)課將要學(xué)習(xí)的內(nèi)容--簡單組合體的三視圖(寫板書)。問題:(1)該教師的課堂引入有什么特色,對教學(xué)有什么好處?(2)簡單談?wù)剶?shù)學(xué)教學(xué)過程中怎樣調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情激發(fā)學(xué)習(xí)興趣。

題型:問答題

已知等差數(shù)列{an}滿足:a3=7,a5+a7=26。{an}的前n項(xiàng)和為S。(1)求an及Sn;(2)令.求數(shù)列{bn}的前n項(xiàng)和Tn。

題型:問答題